Yesterday, 11:04 PM
<h2> Detailed Rotor Balancing Process </h2>
<h3> Preparing the Necessary Tools </h3>
<ul>
<li> Ensure the instrument is complete with all necessary components: vibration transducers, laser tachometer, magnetic stand, software, and other accessories. </li>
<li> Connect the device to your PC using the USB interface and confirm the software installation. </li>
</ul>
<h3> Sensor Installation </h3>
<ul>
<li> Mount the vibration transducers securely on the machine's housing where vibrations are most pronounced, typically near the bearings. </li>
<li> Position the laser tachometer (phase angle sensor) so that it is aimed at the rotor. Attach reflective tape to the rotor for accurate phase angle reading. </li>
</ul>
<h3> Starting the Program </h3>
<ul>
<li> Launch the Balanset software on your computer. </li>
<li> Select the appropriate balancing mode: single-plane or two-plane, depending on the rotor type and your specific requirements. </li>
</ul>
<h3> Initial Vibration Measurement </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" alt="2-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Operate the rotor at its intended working speed. </li>
<li> The application will acquire data on vibration magnitude, rotational velocity, and phase angle to determine the initial imbalance state. </li>
</ul>
<h3> Attaching the Trial Weight </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" alt="3-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Halt the rotation and mount a test weight at a designated position on the rotor, with the weight's value entered into the software (usually in grams). </li>
<li> Run the rotor again, allowing the software to measure the effects of the trial weight on vibration and phase. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" alt="5-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Calculating the Correction Weight </h3>
<ul>
<li> The software uses the measured values to automatically compute the necessary compensating weight's magnitude and placement angle. </li>
<li> The calculated values are presented on-screen in both numerical and graphical formats. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" alt="Bs1 Manual" style="width: 30%; display: block; margin-bottom: 10px;">
</a>
<h3> Mounting the Compensating Weight </h3>
<ul>
<li> Install the correction weight on the rotor according to the software's calculations. </li>
<li> Periodic checks can be performed to ensure the balancing procedure is effectively reducing the vibration. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" alt="1-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Verification and Balancing Completion </h3>
<ul>
<li> With the compensating weight attached, operate the rotor and assess the level of any residual vibration. </li>
<li> If the measured vibration falls within the tolerance defined by ISO 1940, the balancing process is considered successful. </li>
<li> If the vibration level remains high, repeat the process with further weight adjustments. </li>
</ul>
<h3> Creating a Balancing Report </h3>
<ul>
<li> All balancing results are logged and archived within the software, from which you can produce a printable report summarizing the vibration levels, compensating weight, and its installation position. </li>
</ul>
<h3> Final Recommendations </h3>
<ul>
<li> Ensure all applied weights and attached sensors are firmly fixed in their designated positions. </li>
<li> Check that the rotor's rotation is smooth and free from undue noise or vibration. </li>
<li> In cases where the rotor is integrated into a more complex system, ensure the correct operation and interaction of all related components. </li>
</ul>
<p> This process allows for precise imbalance correction, reducing vibration and extending equipment life. </p>
Instagram: https://www.instagram.com/vibromera_ou/
Youtube : https://youtu.be/guA6XJ-ArZM?si=vmkuX7RILzKBl0zL
Our website about <a href="https://vibromera.eu
"> Workshops on practical vibration analysis </a>
Machinio: https://www.machinio.com/listings/983801...n-portugal
Facebook: https://www.facebook.com/marketplace/ite...1228150722
<h3> Preparing the Necessary Tools </h3>
<ul>
<li> Ensure the instrument is complete with all necessary components: vibration transducers, laser tachometer, magnetic stand, software, and other accessories. </li>
<li> Connect the device to your PC using the USB interface and confirm the software installation. </li>
</ul>
<h3> Sensor Installation </h3>
<ul>
<li> Mount the vibration transducers securely on the machine's housing where vibrations are most pronounced, typically near the bearings. </li>
<li> Position the laser tachometer (phase angle sensor) so that it is aimed at the rotor. Attach reflective tape to the rotor for accurate phase angle reading. </li>
</ul>
<h3> Starting the Program </h3>
<ul>
<li> Launch the Balanset software on your computer. </li>
<li> Select the appropriate balancing mode: single-plane or two-plane, depending on the rotor type and your specific requirements. </li>
</ul>
<h3> Initial Vibration Measurement </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" alt="2-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Operate the rotor at its intended working speed. </li>
<li> The application will acquire data on vibration magnitude, rotational velocity, and phase angle to determine the initial imbalance state. </li>
</ul>
<h3> Attaching the Trial Weight </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" alt="3-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Halt the rotation and mount a test weight at a designated position on the rotor, with the weight's value entered into the software (usually in grams). </li>
<li> Run the rotor again, allowing the software to measure the effects of the trial weight on vibration and phase. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" alt="5-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Calculating the Correction Weight </h3>
<ul>
<li> The software uses the measured values to automatically compute the necessary compensating weight's magnitude and placement angle. </li>
<li> The calculated values are presented on-screen in both numerical and graphical formats. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" alt="Bs1 Manual" style="width: 30%; display: block; margin-bottom: 10px;">
</a>
<h3> Mounting the Compensating Weight </h3>
<ul>
<li> Install the correction weight on the rotor according to the software's calculations. </li>
<li> Periodic checks can be performed to ensure the balancing procedure is effectively reducing the vibration. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" alt="1-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Verification and Balancing Completion </h3>
<ul>
<li> With the compensating weight attached, operate the rotor and assess the level of any residual vibration. </li>
<li> If the measured vibration falls within the tolerance defined by ISO 1940, the balancing process is considered successful. </li>
<li> If the vibration level remains high, repeat the process with further weight adjustments. </li>
</ul>
<h3> Creating a Balancing Report </h3>
<ul>
<li> All balancing results are logged and archived within the software, from which you can produce a printable report summarizing the vibration levels, compensating weight, and its installation position. </li>
</ul>
<h3> Final Recommendations </h3>
<ul>
<li> Ensure all applied weights and attached sensors are firmly fixed in their designated positions. </li>
<li> Check that the rotor's rotation is smooth and free from undue noise or vibration. </li>
<li> In cases where the rotor is integrated into a more complex system, ensure the correct operation and interaction of all related components. </li>
</ul>
<p> This process allows for precise imbalance correction, reducing vibration and extending equipment life. </p>
Instagram: https://www.instagram.com/vibromera_ou/
Youtube : https://youtu.be/guA6XJ-ArZM?si=vmkuX7RILzKBl0zL
Our website about <a href="https://vibromera.eu
"> Workshops on practical vibration analysis </a>
Machinio: https://www.machinio.com/listings/983801...n-portugal
Facebook: https://www.facebook.com/marketplace/ite...1228150722